S'abonner

Scattering by a Minkowski brane world - 30/10/09

Doi : 10.1016/j.crma.2009.09.004 
Alain Bachelot
Université de Bordeaux, CNRS, institut de mathématiques, 33405 Talence cedex, France 

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 6
Iconographies 0
Vidéos 0
Autres 0

Abstract

We study the wave equation for the gravitational waves in the Randall–Sundrum brane cosmology model. The global Cauchy problem is well posed in the functional framework associated with the energy. The solutions are the sum of a free massless wave propagating on the brane (the graviton), and a superposition of massive Klein–Gordon waves (the Kaluza–Klein tower). We compute the kernel of the truncated resolvent in term of Hankel functions. We develop the complete asymptotic analysis of the Kaluza–Klein towers:   and   estimates, global   Strichartz estimates, existence and asymptotic completeness of the wave operators, computation of the scattering matrix, determination of the resonances on the logarithmic Riemann surface. To cite this article: A. Bachelot, C. R. Acad. Sci. Paris, Ser. I 347 (2009).

Le texte complet de cet article est disponible en PDF.

Résumé

Nous étudions l’équation des ondes gravitationnelles dans le modèle de cosmologie branaire de Randall–Sundrum. Le problème de Cauchy global est bien posé dans l’espace des champs d’énergie finie. Les solutions se décomposent de façon unique en la somme d’une onde libre sans masse se propageant sur la brane de Minkowski (le graviton) et d’un somme continue de champs massifs de Klein–Gordon (la tour de Kaluza–Klein). Le résolvant tronqué est explicitement exprimé à l’aide de fonctions de Hankel. Nous faisons l’analyse asymptotique complète des tours de Kaluza–Klein : estimations  ,  , estimations globales   de type Strichartz, existence et complétude des opérateurs d’ondes, calcul de la matrice de diffusion, détermination des résonances sur la surface de Riemann du logarithme. Pour citer cet article : A. Bachelot, C. R. Acad. Sci. Paris, Ser. I 347 (2009).

Le texte complet de cet article est disponible en PDF.

Plan

Plan indisponible

© 2009  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 347 - N° 21-22

P. 1243-1248 - novembre 2009 Retour au numéro
Article précédent Article précédent
  • Existence of local solutions for the Boltzmann equation without angular cutoff
  • Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang
| Article suivant Article suivant
  • Restriction of toral eigenfunctions to hypersurfaces
  • Jean Bourgain, Zeév Rudnick

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.