Médecine

Paramédical

Autres domaines


S'abonner

Frequently dense orbits - 01/01/05

Doi : 10.1016/j.crma.2005.05.025 
K.-G. Grosse-Erdmann a, 1 , Alfredo Peris b, 2
a Fachbereich Mathematik, FernUniversität Hagen, 58084 Hagen, Germany 
b E.T.S. Arquitectura, Departament de Matemàtica Aplicada and IMPA-UPV, Universitat Politècnica de València, 46022 València, Spain 

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 6
Iconographies 0
Vidéos 0
Autres 0

Abstract

We study the notion of frequent hypercyclicity that was recently introduced by Bayart and Grivaux. We show that frequently hypercyclic operators satisfy the Hypercyclicity Criterion, answering a question of Bayart and Grivaux [Trans. Amer. Math. Soc., in press]. We also disprove a conjecture therein concerning frequently hypercyclic weighted shifts, and we prove that vectors which have a somewhere frequently dense orbit are frequently hypercyclic. To cite this article: K.-G. Grosse-Erdmann, A. Peris, C. R. Acad. Sci. Paris, Ser. I 341 (2005).

Le texte complet de cet article est disponible en PDF.

Résumé

On étudie la notion dʼhypercyclicité fréquente qui a récemment été introduite par Bayart et Grivaux. Nous démontrons que tout opérateur fréquemment hypercyclique vérifie le Critère dʼHypercyclicité, ce qui répond à une question de Bayart et Grivaux [Trans. Amer. Math. Soc., à paraître]. De plus, nous réfutons une conjecture de Bayart et Grivaux concernant les shifts à poids fréquemment hypercycliques, et nous démontrons que tout vecteur avec une orbite qui est quelque part fréquemment dense est fréquemment hypercyclique. Pour citer cet article : K.-G. Grosse-Erdmann, A. Peris, C. R. Acad. Sci. Paris, Ser. I 341 (2005).

Le texte complet de cet article est disponible en PDF.

Plan

Plan indisponible

© 2005  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 341 - N° 2

P. 123-128 - juillet 2005 Retour au numéro
Article précédent Article précédent
  • Un théorème dannulation en cohomologie de MacLane
  • Gerald Gaudens, Lionel Schwartz
| Article suivant Article suivant
  • Sums, differences, products, and ratios of hypergeometric beta variables
  • Saralees Nadarajah

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.