Médecine

Paramédical

Autres domaines


S'abonner

Calcul de l?espérance de la solution d?une EDP stochastique unidimensionnelle à l?aide d?une base réduite - 27/08/11

Doi : 10.1016/j.crma.2011.07.015 
Jocelyne Erhel a , Zoubida Mghazli b, Mestapha Oumouni a, b
a SAGE-IRISA, INRIA Rennes Bretagne Atlantique, campus de Beaulieu, 35042 Rennes cedex, France 
b LIRNE-EIMA, Université Ibn Tofail, B.P. 133, 14 000 Kenitra, Maroc 

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement ou un achat à l’unité.

pages 5
Iconographies 0
Vidéos 0
Autres 0

Résumé

On présente dans cette Note une méthode efficace pour calculer une approximation de lʼespérance de la réponse dʼun problème elliptique unidimensionnel avec des entrées stochastiques. Dans les méthodes classiques, lʼeffort de calcul et le coût de lʼapproximation de la réponse, peuvent être exorbitants. La méthode présentée ici est basée sur la décomposition de Karhunen–Loève (K-L) de lʼinverse du paramètre de diffusion nous permettant de construire une base de variables aléatoires en nombre réduit et de calculer un projeté de la solution. Nous montrons que lʼespérance de ce projeté est une bonne approximation de celle de la réponse de notre problème, et on donne une estimation a priori de lʼerreur. Un exemple numérique est présenté pour montrer lʼefficacité de cette approche.

Le texte complet de cet article est disponible en PDF.

Abstract

In this Note, we present an efficient method to approximate the expectation of the response of a one-dimensional elliptic problem with stochastic inputs. In conventional methods, the computational effort and cost of the approximation of the response can be dramatic. Our method presented here is based on the Karhunen–Loève (K-L) expansion of the inverse of the diffusion parameter, allowing us to build a base of random variables in reduced numbers, from which we construct a projected solution. We show that the expectation of this projected solution is a good approximation, and give an a priori error estimate. A numerical example is presented to show the efficiency of this approach.

Le texte complet de cet article est disponible en PDF.

Plan

Plan indisponible

© 2011  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 349 - N° 15-16

P. 861-865 - août 2011 Retour au numéro
Article précédent Article précédent
  • An inverse source problem with multiple frequency data
  • Gang Bao, Junshan Lin, Faouzi Triki
| Article suivant Article suivant
  • Numerical null controllability of a semi-linear heat equation via a least squares method
  • Enrique Fernández-Cara, Arnaud Münch

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement ou un achat à l’unité.

L'accès au texte intégral de cet article nécessite un abonnement ou un achat à l'unité.

Déjà abonné à cette revue ?

;

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.