Médecine

Paramédical

Autres domaines


S'abonner

Numerical null controllability of a semi-linear heat equation via a least squares method - 27/08/11

Doi : 10.1016/j.crma.2011.07.014 
Enrique Fernández-Cara a , Arnaud Münch b
a Dpto. EDAN, University of Sevilla, Aptdo. 1160, 41080 Sevilla, Spain 
b Laboratoire de mathématiques, université Blaise-Pascal (Clermont-Ferrand 2), UMR CNRS 6620, campus des Cézeaux, 63177 Aubière, France 

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement ou un achat à l’unité.

pages 5
Iconographies 0
Vidéos 0
Autres 0

Abstract

This Note deals with the computation of distributed null controls for a semi-linear 1D heat equation, in the sublinear and slightly superlinear cases. Under sharp growth assumptions, the existence of controls has been obtained in [E. Fernández-Cara, E. Zuazua, Null and approximate controllability for weakly blowing up semi-linear heat equation, Ann. Inst. Henri Poincaré Analyse non linéaire 17 (5) (2000) 583] via a fixed point reformulation; see also [V. Barbu, Exact controllability of the superlinear heat equation, Appl. Math. Optim. Optimization, Theory and Applications 42 (1) (2000) 73]. More precisely, Carleman estimates and Kakutaniʼs theorem together ensure the existence of fixed points for a corresponding linearized control mapping. In practice, the difficulty is to extract from the Picard iterates a convergent (sub)sequence. We introduce and analyze a least squares reformulation of the problem; we show that this strategy leads to an effective and constructive way to compute fixed points.

Le texte complet de cet article est disponible en PDF.

Résumé

Cette Note concerne la détermination effective de contrôles à zéro pour une équation de la chaleur semi-linéaire, dans le cas légèrement surlinéaire. Sous des conditions de croissances optimales, lʼexistence de contrôles a été obtenue dans [E. Fernández-Cara, E. Zuazua, Null and approximate controllability for weakly blowing up semi-linear heat equation, Ann. Inst. Henri Poincaré Analyse non linéaire 17 (5) (2000) 583] par un argument de point fixe ; voir aussi [V. Barbu, Exact controllability of the superlinear heat equation, Appl. Math. Optim. Optimization, Theory and Applications 42 (1) (2000) 73]. Précisément, des inégalités de Carleman et le théorème de Kakutani impliquent lʼexistence de points fixes pour un opérateur de contrôle linéarisé associé. En pratique, la difficulté est dʼextraire des itérés de Picard une sous-suite convergente. Cette note propose et analyse une reformulation du problème par une approche de type moindres carrés : on montre que celle-ci garantit une construction explicite de points fixes.

Le texte complet de cet article est disponible en PDF.

Plan

Plan indisponible

© 2011  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 349 - N° 15-16

P. 867-871 - août 2011 Retour au numéro
Article précédent Article précédent
  • Calcul de l?espérance de la solution d?une EDP stochastique unidimensionnelle à l?aide d?une base réduite
  • Jocelyne Erhel, Zoubida Mghazli, Mestapha Oumouni
| Article suivant Article suivant
  • Reduced basis a posteriori error bounds for parametrized linear-quadratic elliptic optimal control problems
  • Martin A. Grepl, Mark Kärcher

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement ou un achat à l’unité.

L'accès au texte intégral de cet article nécessite un abonnement ou un achat à l'unité.

Déjà abonné à cette revue ?

;

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.