Médecine

Paramédical

Autres domaines


S'abonner

Nonparametric estimation of the density of regression errors - 08/12/11

Doi : 10.1016/j.crma.2011.10.017 
Rawane Samb
ISBA, Université Catholique de Louvain, 20, voie du Roman pays, B-1348 Louvain-la-Neuve, Belgium 

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement ou un achat à l’unité.

pages 5
Iconographies 0
Vidéos 0
Autres 0

Abstract

Consider the nonparametric regression model  , where the function m is smooth but unknown, and ε is independent of X. An estimator of the density of the error term ε is proposed and its weak consistency is obtained. The strategy used here is based on the kernel estimation of the residuals. Our contribution is twofold. First, we evaluate the impact of the estimation of the regression function m on the error density estimator. Secondly, the optimal choices of the first and second-step bandwidths used for estimating the regression function and the error density respectively, are proposed. Further, we investigate the asymptotic normality of the error density estimator and its rate-optimality.

Le texte complet de cet article est disponible en PDF.

Résumé

Nous présentons un estimateur nonparamétrique de la densité de lʼerreur dans le modèle de régression  , où la fonction m est lisse mais inconnue, et le terme dʼerreur ε est indépendant de X. Lʼestimateur proposé est basé sur une estimation nonparamétrique des résidus, et sa consistance faible est obtenue. Notre contribution se situe à deux niveaux. Dʼabord, nous évaluons lʼimpact de lʼestimation de la fonction de régression sur lʼestimateur final de la densité de lʼerreur. Ensuite, nous proposons les choix optimaux des fenêtres de première et de deuxième étape utilisées respectivement pour les estimations de m et de la densité des résidus. Nous étudions également la normalié asymptotique de lʼestimateur de la densité de lʼerreur et sa vitesse de convergence.

Le texte complet de cet article est disponible en PDF.

Plan

Plan indisponible

© 2011  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 349 - N° 23-24

P. 1281-1285 - décembre 2011 Retour au numéro
Article précédent Article précédent
  • Prescribing the Webster scalar curvature on CR spheres
  • Ridha Yacoub
| Article suivant Article suivant
  • Sur la régression quantile pour variable explicative fonctionnelle : Cas des données spatiales
  • Sophie Dabo-Niang, Zoulikha Kaid, Ali Laksaci

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement ou un achat à l’unité.

L'accès au texte intégral de cet article nécessite un abonnement ou un achat à l'unité.

Déjà abonné à cette revue ?

;

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.