Médecine

Paramédical

Autres domaines


S'abonner

Gromov’s dimension comparison problem on Carnot groups - 15/02/08

Doi : 10.1016/j.crma.2008.01.002 
Zoltán M. Balogh a, 1 , Jeremy T. Tyson b, 2 , Ben Warhurst c, 3
a Department of Mathematics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland 
b Department of Mathematics, University of Illinois, 1409 W. Green St., Urbana, IL 61801, USA 
c School of Mathematics, University of New South Wales, Sydney 2052, Australia 

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 4
Iconographies 0
Vidéos 0
Autres 0

Abstract

We solve Gromov’s dimension comparison problem on Carnot groups equipped with a Carnot–Carathéodory metric and an adapted Euclidean metric. The proofs use sharp covering theorems relating optimal mutual coverings of Euclidean and Carnot–Carathéodory balls, and elements of sub-Riemannian fractal geometry associated to horizontal self-similar iterated function systems on Carnot groups. To cite this article: Z.M. Balogh et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).

Le texte complet de cet article est disponible en PDF.

Résumé

Nous présentons la solution du problème de dimension comparaison de Gromov sur les groupes de Carnot muni d’une métrique de Carnot–Carathéodory et une métrique adaptée Euclidienne. Les preuves uilisent des théorèmes de couvrir précises entre des boules Euclidienne et de Carnot–Carathéodory. Nous utilisons aussi des elements de la géométrie fractale sous-Riemanienne associée des fonctions itérées sur les groupes de Carnot. Pour citer cet article : Z.M. Balogh et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).

Le texte complet de cet article est disponible en PDF.

Plan

Plan indisponible

© 2008  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 346 - N° 3-4

P. 135-138 - février 2008 Retour au numéro
Article précédent Article précédent
  • Classes d’homotopie de fractions rationnelles
  • Christophe Cazanave
| Article suivant Article suivant
  • Algebraic analysis of Hermitian monogenic functions
  • Alberto Damiano, David Eelbode, Irene Sabadini

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

;

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.