S'abonner

Effective stability for slow time-dependent near-integrable Hamiltonians and application - 07/11/13

Doi : 10.1016/j.crma.2013.07.024 
Abed Bounemoura
 Institut des hautes études scientifiques, 35, route de Chartres, 91440 Bures-sur-Yvette, France 

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 4
Iconographies 0
Vidéos 0
Autres 0

Abstract

The aim of this note is to prove a result of effective stability for a non-autonomous perturbation of an integrable Hamiltonian system, provided that the perturbation depends slowly on time. Then we use this result to clarify and extend a stability result of Giorgilli and Zehnder for a mechanical system with an arbitrary time-dependent potential.

Le texte complet de cet article est disponible en PDF.

Résumé

Le but de cette note est de démontrer un résultat de stabilité effective pour une perturbation non autonome dʼun système hamiltonien intégrable, sous la condition que la perturbation dépende lentement du temps. Nous utilisons ensuite ce résultat pour clarifier et généraliser un résultat de stabilité de Giorgilli et Zehnder pour des systèmes mécaniques dont le potentiel dépend arbitrairement du temps.

Le texte complet de cet article est disponible en PDF.

Plan


© 2013  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 351 - N° 17-18

P. 673-676 - septembre 2013 Retour au numéro
Article précédent Article précédent
  • Ruelle operators and decay of correlations for contact Anosov flows
  • Luchezar Stoyanov
| Article suivant Article suivant
  • Explicit 2D ?-harmonic maps whose interfaces have junctions and corners
  • Nicholas Katzourakis

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.