Médecine

Paramédical

Autres domaines


S'abonner

Exponential self-similar mixing and loss of regularity for continuity equations - 16/10/14

Doi : 10.1016/j.crma.2014.08.021 
Giovanni Alberti a , Gianluca Crippa b , Anna L. Mazzucato c
a Dipartimento di Matematica, Università di Pisa, largo Pontecorvo 5, 56127 Pisa, Italy 
b Departement Mathematik und Informatik, Universität Basel, Rheinsprung 21, CH-4051 Basel, Switzerland 
c Department of Mathematics, Penn State University, McAllister Building, University Park, PA 16802, USA 

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 6
Iconographies 3
Vidéos 0
Autres 0

Abstract

We consider the mixing behavior of the solutions to the continuity equation associated with a divergence-free velocity field. In this Note, we sketch two explicit examples of exponential decay of the mixing scale of the solution, in case of Sobolev velocity fields, thus showing the optimality of known lower bounds. We also describe how to use such examples to construct solutions to the continuity equation with Sobolev but non-Lipschitz velocity field exhibiting instantaneous loss of any fractional Sobolev regularity.

Le texte complet de cet article est disponible en PDF.

Résumé

Nous étudions le comportement de mélange de solutions de l'équation de continuité associée à un champ de vitesse à divergence nulle. Dans cette note, nous décrivons deux exemples explicites de décroissance exponentielle de l'échelle de mélange de la solution. Dans le cas des champs de vitesse Sobolev, nous montrons donc l'optimalité des estimations par dessous connues. Nous décrivons aussi comment utiliser de tels exemples pour construire des solutions de l'équation de continuité à champs de vitesse Sobolev mais non lipschitziens : ces solutions perdent immédiatement toute régularité Sobolev fractionnaire.

Le texte complet de cet article est disponible en PDF.

Plan


© 2014  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 352 - N° 11

P. 901-906 - novembre 2014 Retour au numéro
Article précédent Article précédent
  • On the class of bi-univalent functions
  • Srikandan Sivasubramanian, Radhakrishnan Sivakumar, Teodor Bulboac?, Tirunelveli Nellaiappar Shanmugam
| Article suivant Article suivant
  • Source identification for the wave equation on graphs
  • Sergei Avdonin, Serge Nicaise

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

;

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.