Médecine

Paramédical

Autres domaines


S'abonner

Multiscale numerical schemes for kinetic equations in the anomalous diffusion limit - 10/07/15

Doi : 10.1016/j.crma.2015.05.003 
Nicolas Crouseilles a, b , Hélène Hivert b , Mohammed Lemou c, b
a IPSO, INRIA, 263, avenue du Général-Leclerc, 35000 Rennes, France 
b IRMAR, Université de Rennes-1, campus de Beaulieu, 35000 Rennes, France 
c IRMAR, CNRS, 35000 Rennes, France 

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 6
Iconographies 2
Vidéos 0
Autres 0

Abstract

We construct numerical schemes to solve kinetic equations with anomalous diffusion scaling. When the equilibrium is heavy-tailed or when the collision frequency degenerates for small velocities, an appropriate scaling should be made and the limit model is the so-called anomalous or fractional diffusion model. Our first scheme is based on a suitable micro–macro decomposition of the distribution function, whereas our second scheme relies on a Duhamel formulation of the kinetic equation. Both are Asymptotic Preserving (AP): they are consistent with the kinetic equation for all fixed value of the scaling parameter   and degenerate into a consistent scheme solving the asymptotic model when ε tends to 0. The second scheme enjoys the stronger property of being uniformly accurate (UA) with respect to ε. The usual AP schemes known for the classical diffusion limit cannot be directly applied to the context of anomalous diffusion scaling, since they are not able to capture the important effects of large and small velocities. We present numerical tests to highlight the efficiency of our schemes.

Le texte complet de cet article est disponible en PDF.

Résumé

Nous construisons des schémas numériques pour résoudre les équations cinétiques dans le régime de diffusion anormale. Lorsque l'équilibre présente une queue lourde ou lorsque la fréquence de collision dégénère pour les petites vitesses, un scaling approprié permet d'obtenir un modèle asymptotique appelé modèle de diffusion anormale ou fractionnaire. Le premier schéma que nous construisons est basé sur une décomposition micro–macro de la fonction de distribution, tandis que le second s'appuie sur une formulation de Duhamel de l'équation de départ. Ces deux schémas sont Asymptotic Preserving (AP) : ils sont consistants avec l'équation cinétique lorsque le paramètre d'échelle   est fixé et dégénèrent en un schéma consistant avec le modèle limite quand ε tend vers 0. Le deuxième schéma est même uniformément précis (UA) par rapport à ε. Les schémas AP qui sont connus dans le cas de la limite de diffusion classique ne peuvent pas directement s'appliquer au cas de la diffusion anormale, car ils ne permettent pas de capturer les effets importants des petites et des grandes vitesses. Nous présentons des tests numériques pour mettre en évidence l'efficacité des schémas que nous présentons.

Le texte complet de cet article est disponible en PDF.

Plan


© 2015  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 353 - N° 8

P. 755-760 - août 2015 Retour au numéro
Article précédent Article précédent
  • The central limit theorem for complex Riesz–Raikov sums
  • Katusi Fukuyama, Noriyuki Kuri
| Article suivant Article suivant
  • Which spline spaces for design?
  • Marie-Laurence Mazure

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

;

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.