Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    6 0 0 0

Comptes Rendus Mathématique
Volume 353, n° 12
pages 1087-1092 (décembre 2015)
Doi : 10.1016/j.crma.2015.09.030
Received : 18 September 2015 ;  accepted : 30 September 2015
Profile decomposition and phase control for circle-valued maps in one dimension
Décomposition en profils et contrôle des phases des applications unimodulaires en dimension un

Petru Mironescu
 Université de Lyon, Université Lyon-1, CNRS UMR 5208, Institut Camille-Jordan, 43 bd du 11-Novembre-1918, 69622 Villeurbanne cedex, France 


When  , maps f in   have   phases φ , but the  -seminorm of φ is not controlled by the one of f . Lack of control is illustrated by “the kink”:  , where the phase φ moves quickly from 0 to 2π . A similar situation occurs for maps  , with Moebius maps playing the role of kinks. We prove that this is the only loss of control mechanism: each map   satisfying   can be written as  , where   is a Moebius map vanishing at  , while the integer   and the phase ψ are controlled by M . In particular, we have   for some  . When  , we obtain the sharp value of  , which is  . As an application, we obtain the existence of minimal maps of degree one in   with  .

The full text of this article is available in PDF format.

Si  , les applications f appartenant à   ont des phases φ dans  , mais la seminorme   de φ n'est pas contrôlée par celle de f . L'absence de contrôle est illustrée par « le pli » :  , où la phase φ augmente rapidement de 0 à 2π . Pour des applications  , le même phénomène apparaît, avec les transformations de Moebius jouant le rôle des plis. Nous prouvons que cet exemple est essentiellement le seul : toute application   telle que   s'écrit  , où   est une transformation de Moebius s'annulant en  , tandis que l'entier   et la phase ψ sont contrôlés par M . En particulier, nous avons   pour une constante  . Pour  , nous obtenons la valeur optimale de  , qui est  . Comme application, nous obtenons l'existence d'une application minimale de degré un dans   avec  .

The full text of this article is available in PDF format.

© 2015  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline