Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    5 0 0 0

Comptes Rendus Mathématique
Volume 353, n° 12
pages 1093-1097 (décembre 2015)
Doi : 10.1016/j.crma.2015.09.014
Received : 14 September 2015 ;  accepted : 18 September 2015
Boundary regularity of weakly anchored harmonic maps
Régularité au bord des applications harmoniques avec ancrage faible

Andres Contreras a , Xavier Lamy b, c , Rémy Rodiac d, e
a Science Hall 224, New Mexico State University, Department of Mathematical Sciences, USA 
b Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany 
c Institut Camille Jordan, Université Lyon-1, Villeurbanne, France 
d Département de mathématiques, Université Paris-Est Créteil, 61, avenue du Général-de-Gaulle, 94010 Créteil cedex, France 
e Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Vicuna Mackenna 4860, Macul, Santiago, Chile 


In this note, we study the boundary regularity of the minimizers of a family of weak anchoring energies that model the states of liquid crystals. We establish optimal boundary regularity in all dimensions  . In dimension  , this yields full regularity at the boundary, which stands in sharp contrast with the observation of boundary defects in physics works. We also show that, in the cases of weak and strong anchoring, the regularity of the minimizers is inherited from that of their corresponding limit problems.

The full text of this article is available in PDF format.

Dans cette note, nous étudions la régularité au bord des minimiseurs d'une famille d'énergies avec ancrage faible utilisée dans la modélisation des cristaux liquides. Nous établissons la régularité au bord optimale en toute dimension supérieure à 3. En dimension  , de tels minimiseurs sont lisses près du bord, ce qui va à l'encontre des observations de défauts sur le bord dans les travaux physiques. Nous montrons également que, dans les cas de faible et de fort ancrage, la régularité des minimiseurs est héritée de la régularité des minimiseurs des problèmes limites correspondants.

The full text of this article is available in PDF format.

© 2015  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline