Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    5 0 0 0

Comptes Rendus Mathématique
Volume 354, n° 1
pages 107-111 (janvier 2016)
Doi : 10.1016/j.crma.2015.10.008
Received : 30 December 2014 ;  accepted : 19 October 2015
Parametric estimation in autoregressive processes under quasi-associated random errors
Estimation paramétrique dans des processus autorégressifs sous des erreurs quasi associées

Idir Arab a , Abdelnasser Dahmani b
a Department of Mathematics, Laboratory of Applied Mathematics, University of Bejaia 06000, Algeria 
b Centre Universitaire de Tamanrasset 


In this paper, we study the consistence of a recurrent stochastic algorithm under quasi-associated random errors. Kholev's algorithm estimates an unknown non-zero parameter θ introduced in a nonlinear autoregressive model. We establish the complete convergence and deduce a confidence interval for θ .

The full text of this article is available in PDF format.

Dans cette note, on étudie la consistance d'un algorithme récurrent sous des erreurs quasi-associées. L'algorithme de Kholev approxime un paramètre non nul θ introduit dans un modèle autorégressif. On établit la convergence complète et on déduit un intervalle de confiance pour θ .

The full text of this article is available in PDF format.

Keywords : Autoregressive processes, Parametric estimation, Quasi-associated random variables

 Fully documented templates are available in the elsarticle package on CTAN.

© 2015  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline