Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 33,00 € Taxes included to order
    Pages Iconography Videos Other
    6 0 0 0

Comptes Rendus Mathématique
Volume 354, n° 1
pages 57-62 (janvier 2016)
Doi : 10.1016/j.crma.2015.10.004
Received : 22 June 2015 ;  accepted : 1 October 2015
Fixed point strategies for mixed variational formulations of the stationary Boussinesq problem
Stratégies de point fixe pour formulations variationnelles mixtes du problème stationnaire de Boussinesq

Eligio Colmenares c, a , Gabriel N. Gatica c, a , Ricardo Oyarzúa b, c
a Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile 
b GIMNAP-Departamento de Matemática, Universidad del Bío-Bío, Casilla 5-C, Concepción, Chile 
c CI2MA, Universidad de Concepción, Casilla 160-C, Concepción, Chile 


In this paper, we report on the main results concerning the solvability analysis of two new mixed variational formulations for the stationary Boussinesq problem. More precisely, we introduce mixed-primal and fully-mixed approaches, both of them suitably augmented with Galerkin-type equations, and show that the resulting schemes can be rewritten, equivalently, as fixed-point operator equations. Then, classical arguments from linear and nonlinear functional analysis are employed to conclude that they are well-posed.

The full text of this article is available in PDF format.

Dans cet article, on présente les principaux résultats concernant l'analyse de résolution de deux nouvelles formulations variationnelles mixtes pour le problème stationnaire de Boussinesq. Plus précisément, on introduit des approches mixtes-primal et entièrement mixtes, toute les deux convenablement augmentées avec des équations de type Galerkin, et l'on montre que les régimes qui en résultent peuvent être réécrits, de maniére équivalente, comme équations d'opérateur de point fixe. Ainsi, les arguments classiques de l'analyse fonctionnelle linéaires et non linéaires sont utilisés pour conclure qu'elles sont bien posées.

The full text of this article is available in PDF format.

 This work was partially supported by CONICYT-Chile through BASAL project CMM, Universidad de Chile, project Anillo ACT1118 (ANANUM), and project Fondecyt 11121347; by Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción; and by Universidad del Bío-Bío through DIUBB project 120808 GI/EF.

© 2015  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline