Article

Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text
Advertising


Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    4 0 0 0


Comptes Rendus Mathématique
Volume 354, n° 1
pages 97-100 (janvier 2016)
Doi : 10.1016/j.crma.2015.10.009
Received : 27 February 2013 ;  accepted : 19 October 2015
Sur les déformations des feuilletages de Lie nilpotents
On the deformations of nilpotent Lie foliations
 

Hamidou Dathe
 Département de mathématiques et informatique, faculté des sciences et techniques, université Cheikh-Anta-Diop, Dakar, Sénégal 

Résumé

On construit des feuilletages de Lie nilpotents sur une variété compacte qui n'admettent pas de déformation résoluble non nilpotente.

The full text of this article is available in PDF format.
Abstract

We construct on a compact manifold a nilpotent (non-Abelian) Lie foliation of any codimension that cannot be deformed into a non-nilpotent solvable one.

The full text of this article is available in PDF format.


© 2015  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Close
Article Outline
You can move this window by clicking on the headline