Article

Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text
Advertising


Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 33,00 € Taxes included to order
    Pages Iconography Videos Other
    11 0 0 0


Comptes Rendus Mathématique
Volume 355, n° 2
pages 232-242 (février 2017)
Doi : 10.1016/j.crma.2017.01.001
Received : 30 December 2016 ;  accepted : 30 December 2016
Une approche intrinsèque d'un modèle non linéaire de la théorie des coques
An intrinsic approach to a nonlinear model in shell theory
 

Philippe G. Ciarlet a , Oana Iosifescu b
a Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 
b Départment de Mathématiques, université de Montpellier, place Eugène-Bataillon, 34095 Montpellier cedex 5, France 

Résumé

On considère le modèle de coque non linéairement élastique « peu profonde » proposé par L.H. Donnell, V.Z. Vlasov, K.M. Mushtari & K.Z. Galimov et W.T. Koiter. On montre que les champs de tenseurs, linéarisés de changement de courbure et non linéaire des déformations, apparaissant dans l'énergie de ce modèle peuvent être pris comme les seules inconnues du problème, au lieu du champ des déplacements comme à l'accoutumée. Afin de justifier cette « approche intrinsèque » de ce modèle non linéaire de coques, on identifie des conditions de compatibilité non linéaires que ces nouvelles inconnues doivent satisfaire. Ces conditions sont du type de Donati, au sens qu'elles se présentent sous la forme de relations intégrales d'orthogonalité à des champs de tenseurs à divergence nulle.

The full text of this article is available in PDF format.
Abstract

We consider the model of a nonlinearly elastic “shallow” shell proposed by L.H. Donnell, V.Z. Vlasov, K.M. Mushtari & K.Z. Galimov, and W.T. Koiter. We show that the linearized change of curvature and nonlinear strain tensor fields appearing in the energy of this model can be taken as the sole unknowns of the problem, instead of the displacement field as is customary. In order to justify this “intrinsic approach” to this nonlinear model, we identify nonlinear compatibility conditions that these new unknowns must satisfy. These conditions are of Donati type, in the sense that they take the form of integral orthogonality relations against divergence-free tensor fields.

The full text of this article is available in PDF format.


© 2017  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Close
Article Outline