Article

7 Iconography
Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text
Advertising


Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates



@@#116300@@

Orthopaedics & Traumatology: Surgery & Research
Sous presse. Epreuves corrigées par l'auteur. Disponible en ligne depuis le samedi 23 février 2019
Doi : 10.1016/j.otsr.2018.12.008
Received : 6 October 2018 ;  accepted : 6 December 2018
Computed tomography method for characterising the zebrafish spine
 

Laura Marie-Hardy a, , Marc Khalifé a, Lofti Slimani b, Hugues Pascal-Moussellard a
a Service d’orthopédie et de traumatologie, hôpital de la Pitié-Salpêtrière, 47, boulevard de l’hôpital, 75013 Paris, France 
b EA2496, pathologie, imagerie & biothérapies orofaciales, faculté de chirurgie dentaire, université Paris Descartes, 1, rue Maurice-Arnoux, 92120 Montrouge, France 

Corresponding author.
Abstract
Background

The zebrafish is widely used in research due in part to its readily manipulable genome. Zebrafish models of spinal deformities including scoliosis were developed recently. However, the methods used to assess the spine in these models vary across studies. The primary objective of this study was to investigate the feasibility and modalities of local and regional spine structure evaluation by micro-CT in the normal zebrafish. The secondary objectives were to assess the feasibility of spinal angle measurements in normal zebrafish subjected to external stresses designed to mimic spinal deformities, to determine normal angle values in the coronal and sagittal planes, and to detail the micro-CT features of the zebrafish spine.

Hypothesis

Micro-CT is an effective and reproducible tool for determining orthopaedic parameters to characterise the zebrafish spine.

Material and Methods

Two observers conducted preliminary analyses on 15 zebrafish including 12 adults (aged 18 months) and 3 juveniles (aged 12 weeks). For the analyses, 6 of the animals were placed in an artificial position to mimic a scoliosis spinal deformity. Micro-CT (Quantum FX Caliper™) was used with 59μm resolution and a 30-mm field of view. Image processing was with RadiAnt DICOM Viewer™ software.

Results

We defined several assessment planes on the 3D micro-CT reconstructions to measure orthopaedic parameters in the sagittal plane (thoracic and maximal kyphotic curves with their apices, length of the various spinal segments, and sagittal index) and coronal plane (Cobb angles, apices, end-vertebrae, coronal alignment, and side of the convexity). Mean thoracic kyphosis was 20.5°±5.0° in the adults and 8.7° in the juveniles. No curvature was apparent in the coronal plane in the zebrafish left in the neutral position. In the zebrafish with artificially induced curves, micro-CT was effective in determining the Cobb angles and apical vertebrae.

Discussion

This work defines a standardised micro-CT method for assessing the zebrafish spine. In addition, spinal parameter values that can be considered normal were determined, namely, less than 30° of thoracic kyphosis in the sagittal plane and less than 10° in the coronal plane. Our method was effective in assessing induced spinal deformities on micro-CT reconstructions. We hope it will prove of value in future studies of the zebrafish model.

Level of evidence

IV.

The full text of this article is available in PDF format.

Keywords : Zebrafish, Computed tomography, Spine, Scoliosis, Live imaging




© 2019  Elsevier Masson SAS. All Rights Reserved.
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Close
Article Outline