Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    8 0 0 0

Comptes Rendus Mathématique
Volume 357, n° 2
pages 180-187 (février 2019)
Doi : 10.1016/j.crma.2019.01.006
Received : 13 April 2018 ;  accepted : 21 January 2019
Eigenvalue and gap estimates of isometric immersions for the Dirichlet-to-Neumann operator acting on p -forms
Estimations de valeurs propres et du gap de l'opérateur de Dirichlet-à-Neumann agissant sur les p -formes pour les immersions isométriques

Deborah Michel
 Laboratoire de mathématiques Raphaël-Salem, UMR 6085 CNRS–Université de Rouen, avenue de l'Université, BP 12, Technopôle du Madrillet, 76801 Saint-Étienne-du-Rouvray, France 


In this paper, we study the first eigenvalue of the Dirichlet-to-Neumann operator acting on differential forms of a Riemannian manifold with boundary isometrically immersed in some Euclidean space. We give a lower bound of the integral energy of p -forms in terms of its first eigenvalue associated with  -forms. We also find a lower bound for the gap between two consecutive first eigenvalues in terms of the curvature of the boundary.

The full text of this article is available in PDF format.

Dans cet article, nous étudions la première valeur propre de l'opérateur de Dirichlet-à-Neumann agissant sur les formes différentielles d'une variété riemannienne à bord plongée isométriquement dans un espace euclidien. Nous obtenons une borne inférieure de l'énergie des p -formes en termes de sa première valeur propre associée aux  -formes. Nous trouvons aussi une borne inférieure pour l'écart entre deux premières valeurs propres consécutives par rapport à la courbure de la frontière.

The full text of this article is available in PDF format.

© 2019  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline