Article

Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text
Advertising


Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    5 0 0 0


Comptes Rendus Mathématique
Volume 334, n° 7
pages 591-595 (2002)
Doi : S1631-073X(02)02298-7
Received : 21 November 2001 ;  accepted : 29 January 2002
Estimation localement suroptimale et adaptative de la densité
Locally superoptimal and adaptive projection density estimators
 

Denis Bosq
74, rue Dunois, 75013 Paris, France 

Note présentée par Paul Deheuvels

Résumé

On étudie une version tronquée de l'estimateur par projection dans un cadre général. On montre que cet estimateur atteint une vitesse suroptimale sur un ensemble dense dans la classe des densités à estimer et une vitesse quasi-optimale ailleurs. Cet ensemble peut être choisi par le statisticien et la vitesse suroptimale est atteinte pour l'erreur quadratique intégrée et la convergence uniforme presque sûre. Une version adaptative de l'estimateur est également considérée. Pour citer cet article : D. Bosq, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 591-595.

The full text of this article is available in PDF format.
Abstract

We study a data-driven version of the density projection estimator in a general framework. We show that this estimator reaches a superoptimal rake on a dense set in the density class, and a quasi-optimal rake elsewhere. This set can be chosen by the statistician, and the superoptimal speed is reached for integrated quadratic error and almost sure uniform convergence. An adaptive version of the estimator is also considered. To cite this article: D. Bosq, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 591-595.

The full text of this article is available in PDF format.


© 2002  Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All Rights Reserved.
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Close
Article Outline
You can move this window by clicking on the headline
@@#110903@@