Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 33,00 € Taxes included to order
    Pages Iconography Videos Other
    5 0 0 0

Comptes Rendus Mathématique
Volume 334, n° 4
pages 267-271 (2002)
Doi : S1631-073X(02)02240-9
Received : 27 November 2001 ;  accepted : 10 December 2001
A subspace theorem approach to integral points on curves
Points entiers sur les courbes et théorème des sous-espaces

Pietro Corvaja a , Umberto Zannier b
a Dip. di Matematica e Informatica, Via delle Scienze, 33100 Udine, Italy 
b Ist. Univ. Arch.-D.C.A., S. Croce, 191, 30135 Venezia, Italy 

Note presented by Enrico Bombieri


We present a proof of Siegel's theorem on integral points on affine curves, through the Schmidt subspace theorem, rather than Roth's theorem. This approach allows one to work only on curves, avoiding the embedding into Jacobians and the subsequent use of tools from the arithmetic of Abelian varieties. To cite this article: P. Corvaja, U. Zannier, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 267-271.

The full text of this article is available in PDF format.

Nous donnons une nouvelle démonstration du théorème de Siegel sur les points entiers des courbes, qui repose sur le théorème des sous-espaces de Schmidt. Notre méthode n'utilise pas le plongement d'une courbe dans sa jacobienne, évitant ainsi l'utilisation de résultats sur l'arithmétique des variétés abéliennes. Pour citer cet article : P. Corvaja, U. Zannier, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 267-271.

The full text of this article is available in PDF format.

© 2002  Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All Rights Reserved.
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline