Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    3 0 0 0

Comptes Rendus Mathématique
Volume 334, n° 4
pages 321-323 (2002)
Doi : S1631-073X(02)02260-4
Received : 19 December 2001 ;  accepted : 7 January 2002
On manifolds supporting quasi-Anosov diffeomorphisms
Sur les variétés qui admettent des difféomorphismes de type quasi-Anosov

Jana Rodriguez Hertz , Raúl Ures , José L Vieitez
CC 30, IMERL - Facultad de Ingenierı́a, Universidad de la República, Montevideo, Uruguay 

Note presented by Etienne Ghys


Let M be an n -dimensional manifold supporting a quasi-Anosov diffeomorphism. If n =3 then either M=T3, in which case the diffeomorphisms is Anosov, or else its fundamental group contains a copy of Z6. If n =4 then Π 1 (M ) contains a copy of Z4, provided that the diffeomorphism is not Anosov. To cite this article: J. Rodriguez Hertz et al., C. R. Acad. Sci. Paris, Ser. I 334 (2002) 321-323.

The full text of this article is available in PDF format.

Soit M une variété différentiable de dimension n qui admet un difféomorphisme de type quasi-Anosov. Si n =3 alors on a l'altenative suivante, ou bien M=T3, et dans ce cas le difféomorphisme est en fait d'Anosov, ou bien le goupe fondamental de M contient une copie de Z6. Si n =4, alors Π 1 (M ) contient une copie de Z4, pourvu que le difféomorphisme ne soit pas d'Anosov. Pour citer cet article : J. Rodriguez Hertz et al., C. R. Acad. Sci. Paris, Ser. I 334 (2002) 321-323.

The full text of this article is available in PDF format.

 The first author was partially supported by a grant from PEDECIBA. The second author was partially supported by CONICYT, Fondo Clemente Estable.

© 2002  Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All Rights Reserved.
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline