Article

9 Iconography
Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text
Service d'aide à la décision clinique
Advertising


Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 33,00 € Taxes included to order
    Pages Iconography Videos Other
    21 9 0 0


Journal Français d'Ophtalmologie
Volume 42, n° 6
pages 551-571 (juin 2019)
Doi : 10.1016/j.jfo.2018.11.013
Received : 1 November 2018 ;  accepted : 22 November 2018
Articles originaux

Le Big Data peut-il changer nos pratiques ?
Can Big Data change our practices?
 

V. Daien a, b, c, A. Muyl-Cipollina a,
a Service d’ophtalmologique, hôpital Gui De Chauliac, 80, avenue Augustin Fliche, 34295 Montpellier, France 
b Inserm, epidemiological and clinical research, université Montpellier, 34295 Montpellier, France 
c The Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, Australie 

Auteur correspondant.
Résumé

L’Agence européenne du médicament a défini les Big Data par 3 « V » : Volume, Vélocité et Variété. Ces grosses bases de données permettent d’avoir des données en vie réelle sur la prise en charge des patients. Elles sont particulièrement adaptées à l’étude des événements indésirables et en pharmaco-épidémiologie. Le Deep Learning est un ensemble de méthodes d’apprentissage automatique tentant de modéliser avec un haut niveau d’abstraction des données grâce à des réseaux neuronaux informatiques. Cet article détaille les sources de Big Data, les avantages et inconvénients de ces études et les applications en ophtalmologie. Une revue de la littérature est présentée dans cet article afin d’illustrer l’utilisation du Deep Learning en ophtalmologie.

The full text of this article is available in PDF format.
Summary

The European Medicines Agency has defined Big Data by the “3 V's”: Volume, Velocity and Variety. These large databases allow access to real life data on patient care. They are particularly suited for studies of adverse events and pharmacoepidemiology. Deep learning is a collection of algorithms used in machine learning, used to model high-level abstractions in data using model architectures, which are composed of multiple nonlinear transformations. This article shows how Big Data and Deep Learning can help in ophthalmology, pointing out their advantages and disadvantages. A literature review is presented in this article illustrating the uses of Deep Learning in ophthalmology.

The full text of this article is available in PDF format.

Mots clés : Big Data, Deep Learning, Ophtalmologie

Keywords : Big Data, Deep Learning, Ophthalmology




© 2019  Elsevier Masson SAS. All Rights Reserved.
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Close
Article Outline