Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    4 0 0 0

Comptes Rendus Mathématique
Volume 335, n° 1
pages 83-86 (2002)
Doi : S1631-073X(02)02377-4
Received : 11 February 2002 ;  accepted : 7 Mars 2002
Sous-ensembles homogènes de Z2 et pavages du plan
Homogeneous subsets of Z2 and plane tilings

Maurice Nivat
LIAFA CNRS UMR 7089, Université Paris 7, case 7014, 2, place Jussieu, 75251 Paris cedex 05, France 

Note présentée par Maurice Nivat


Nous appelons sous-ensemble homogène de degré k pour F du plan discret Z2 tout sous-ensemble tel qu'à travers toutes les positions possibles d'une fenêtre finie que l'on translate apparait toujours le même nombre k de points de A . Nous montrons deux propriétés, il existe un sous-ensemble homogène de degré 1 pour F si et seulement si F pave le plan par translation. Si la fenêtre est rectangulaire tout sous-ensemble homogène de degré k pour F est l'union disjointe de k sous-ensembles homogènes de degré 1 pour F . Pour citer cet article : M. Nivat, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 83-86.

The full text of this article is available in PDF format.

We say that the subset A of the discrete plane Z2 is k -homogeneous for F if and only if whichever is the position of a finite window F which we translate over Z2 the same number k of points of A appears in the window. And we prove two properties. There exists a 1-homogeneous subset for F if and only if F tiles the plane by translation. If the window is a rectangle every k -homogeneous subset is the disjoint union of k 1-homogeneous subset. To cite this article: M. Nivat, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 83-86.

The full text of this article is available in PDF format.

© 2002  Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All Rights Reserved.
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline