Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    4 0 0 0

Comptes Rendus Mathématique
Volume 335, n° 1
pages 1-4 (2002)
Doi : S1631-073X(02)02424-X
Received : 22 February 2002 ;  accepted : 29 April 2002
Formes linéaires en polyzêtas et intégrales multiples
Linear forms in multiple zeta values and multiple integrals

Stéphane Fischler
Département de mathématiques et applications, École normale supérieure, 45, rue d'Ulm, 75005 Paris, France 

Note présentée par Christophe Soulé


Le problème considéré ici est de définir des familles d'intégrales n -uples, munies d'une action de groupe comme dans les travaux de Rhin-Viola [5,6], dont les valeurs soient des formes linéaires, sur le corps des rationnels, en les polyzêtas de poids au plus n . On généralise pour cela les approches de Vasilyev [10] et Sorokin [7], en les reliant par un changement de variables. On décrit aussi une structure de groupe pour une intégrale n -uple qui donne, pour n =2 et n =3, celles obtenues par Rhin et Viola. Pour citer cet article : S. Fischler, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 1-4.

The full text of this article is available in PDF format.

The problem we consider is to define families of n -dimensional integrals, endowed with group actions as in Rhin-Viola's work [5,6], the values of which are linear forms, over the rationals, in multiple zeta values of weight at most n . We generalize Vasilyev's [10] and Sorokin's [7] approaches, and give a change of variables that connects them to each other. We describe a group structure for a n -dimensional integral that specializes, for n =2 and n =3, to the ones obtained by Rhin and Viola. To cite this article: S. Fischler, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 1-4.

The full text of this article is available in PDF format.

© 2002  Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All Rights Reserved.
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline