Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    6 0 0 0

Comptes Rendus Mathématique
Volume 335, n° 1
pages 27-32 (2002)
Doi : S1631-073X(02)02419-6
accepted : 29 April 2002
What is a solution to the Navier-Stokes equations?
Qu'est-ce qu'une solution des équations de Navier-Stokes ?

Sandrine Dubois
LAMFA, CNRS, FRE 2270, Université de Picardie Jules Verne, 33, rue Saint-Leu, 80039 Amiens cedex 1, France 

Note presented by Yves Meyer


The definition of a solution to the Navier-Stokes equations varies according to authors, but the link between those different definitions is not always explicit. In this Note, we intend to prove that six of the most common definitions are equivalent under a physically reasonable assumption. We then indicate a few consequences of this result. To cite this article: S. Dubois, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 27-32.

The full text of this article is available in PDF format.

La définition d'une solution des équations de Navier-Stokes varie avec les auteurs mais le lien entre ces différentes définitions n'est pas toujours explicite. Dans cette Note, on se propose de montrer que six des définitions les plus courantes sont équivalentes sous une hypothèse physiquement raisonnable. On indique ensuite quelques conséquences de ce résultat. Pour citer cet article : S. Dubois, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 27-32.

The full text of this article is available in PDF format.

© 2002  Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All Rights Reserved.
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline