S'abonner

Théories o-minimales avec un automorphisme - 04/04/08

Grégory Duby
Université Libre de Bruxelles, service de logique, CP 211, boulevard du Triomphe, 1050 Bruxelles, Belgique 

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 4
Iconographies 0
Vidéos 0
Autres 0

Note présentée par Jean-Yves Girard

Résumé

Etant donnée une théorie T de langage L, Tσ est la théorie T à laquelle on ajoute les axiomes qui expriment que σ est un L-automorphisme. Nous montrons ici que pour la théorie de (Z,⩽,s) ou pour toute théorie o-minimale ω-catégorique, il existe une expansion par définition naturelle de Tσ admettant un modèle compagnon. Pour citer cet article : G. Duby, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 417-420.

Le texte complet de cet article est disponible en PDF.

Abstract

Let T be a theory of language L. Set Tσ=T{σ is an L-automorphism}. We show that if T is the theory of (Z,⩽,s) or if T is o-minimal and ω-categorical then there is a natural expansion by definition of Tσ having a model companion. To cite this article: G. Duby, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 417-420.

Le texte complet de cet article est disponible en PDF.

Plan

Plan indisponible

© 2002  Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 335 - N° 5

P. 417-420 - 2002 Retour au numéro
Article précédent Article précédent
  • Demi-isomorphie, autodualité et tournois non fortement connexes finis
  • Moncef Bouaziz, Youssef Boudabbous
| Article suivant Article suivant
  • On a class of local systems associated to plane curves
  • Pedro C Silva

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.