Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    6 0 0 0

Comptes Rendus Mathématique
Volume 335, n° 4
pages 345-350 (2002)
Doi : S1631-073X(02)02476-7
Received : 7 May 2002 ;  accepted : 3 June 2002
Randomized isomorphic Dvoretzky theorem
Version aléatoire isomorphique du théorème de Dvoretzky

Alexander Litvak a , Piotr Mankiewicz b , Nicole Tomczak-Jaegermann a
a Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2G1, Canada 
b Institute of Mathematics, Polish Academy of Sciences, PB 137, 00-950 Warsaw, Poland 

Note presented by Gilles Pisier


Let K be a symmetric convex body in RN for which B 2 N is the ellipsoid of minimal volume. We provide estimates for the geometric distance of a ‘typical' rank n projection of K to B 2 n , for 1⩽n <N . Known examples show that the resulting estimates are optimal (up to numerical constants) even for the Banach-Mazur distance. To cite this article: A. Litvak et al., C. R. Acad. Sci. Paris, Ser. I 335 (2002) 345-350.

The full text of this article is available in PDF format.

Soit K un corps convexe symétrique de RN dont l'ellipsoı̈de de volume minimal le contenant est la boule euclidienne B 2 N . Nous estimons la distance géométrique de projections « typiques » de rang n de K à la boule B 2 n pour tout n {1,...,N −1} (i.e. nous prouvons qu'il en existe une grande proportion au sens de la mesure de Haar normalisée sur la grassmanienne). Des exemples bien connus permettent de dire que ces estimations sont optimales (à des constantes numériques près), même pour la distance de Banach-Mazur. Pour citer cet article : A. Litvak et al., C. R. Acad. Sci. Paris, Ser. I 335 (2002) 345-350.

The full text of this article is available in PDF format.

© 2002  Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All Rights Reserved.
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline