Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    4 0 0 0

Comptes Rendus Mathématique
Volume 335, n° 4
pages 351-354 (2002)
Doi : S1631-073X(02)02478-0
Received : 18 Mars 2002 ;  accepted : 20 June 2002
Vector bundles of degree zero over an elliptic curve
Fibrés vectoriels de degré zéro sur une courbe elliptique

Silke Lekaus
FB 6 - Mathematik, Universität Essen, Universitätsstraße 3, 45117 Essen, Germany 

Note presented by Jean-Pierre Serre


In this Note we study indecomposable vector bundles of degree zero over an elliptic curve. We show that each bundle generates a ring and a Tannakian category, such that the ring and the group scheme associated to the Tannakian category are of the same dimension. Furthermore we show that the result does not extend to curves of genus 2. To cite this article: S. Lekaus, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 351-354.

The full text of this article is available in PDF format.

Dans cette Note, nous étudions les fibrés vectoriels indécomposables de degré zéro sur une courbe elliptique. Nous montrons que chaque fibré engendre un anneau et une catégorie tannakienne tels que l'anneau et le schéma en groupes associé à la catégorie soient de la même dimension. De plus, nous montrons que ce résultat ne s'étend pas aux courbes de genre 2. Pour citer cet article : S. Lekaus, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 351-354.

The full text of this article is available in PDF format.

© 2002  Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All Rights Reserved.
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline