Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    6 0 0 0

Comptes Rendus Mathématique
Volume 335, n° 4
pages 359-364 (2002)
Doi : S1631-073X(02)02484-6
Received : 4 June 2002 ;  accepted : 24 June 2002
Une condition suffisante de minimalité pour les géodésiques de la métrique de Hofer
A sufficient minimality condition for geodesics of the Hofer's metric

Jérôme Le Crapper
Mathématiques UFR 920, Université Paris 6, 75252 Paris cedex 05, France 

Note présentée par Charles-Michel Marle


On donne une nouvelle condition suffisante afin qu'un Hamiltonien non autonome H sur R2n engendre une géodésique minimisante de la distance de Hofer. Cette condition porte sur le spectre des applications linéarisées de l'isotopie {φ H t } engendrée par H aux points fixes de l'isotopie. On montre de plus que si deux difféomorphismes φ 0 et φ 1 sont reliés par une telle géodésique alors la distance de Hofer entre φ 0 et φ 1 coïncide avec celle de Viterbo. Pour citer cet article : J. Le Crapper, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 359-364.

The full text of this article is available in PDF format.

We give a new sufficient condition for a Hamiltonian H to generate a length minimizing geodesic of the Hofer's metric on the group of Hamiltonian diffeomorphisms on R2n. This condition is related to the spectra of the linearized maps of the flow {φ H t } generated by H at the fixed points of the flow. In addition we show that if φ 0 , φ 1 are two diffeomorphisms linked by such a geodesic, then the Hofer's distance between φ 0 and φ 1 is the same as Viterbo's one. To cite this article: J. Le Crapper, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 359-364.

The full text of this article is available in PDF format.

© 2002  Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All Rights Reserved.
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline