Article

Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text
Advertising


Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    5 0 0 0


Comptes Rendus Mathématique
Volume 336, n° 9
pages 719-723 (mai 2003)
Doi : 10.1016/S1631-073X(03)00167-5
Received : 17 Mars 2003 ;  accepted : 17 Mars 2003
Convergence of the parabolic Ginzburg-Landau equation to motion by mean curvature

Fabrice  Bethuel ab ,  Giandomenico  Orlandi c ,  Didier  Smets a
aLaboratoire Jacques-Louis Lions, Université de Paris 6, 4, place Jussieu, BC 187, 75252 Paris, France 
bInstitut universitaire de France 
cDipartimento di Informatica, Università di Verona, Strada le Grazie, 37134 Verona, Italy 

@@#100979@@

We present some new results for the asymptotic behavior of the complex parabolic Ginzburg-Landau equation. In particular, we establish that, as the parameter   tends to 0, vorticity evolves according to motion by mean curvature in Brakke's weak formulation. The only assumption we make is a natural energy bound on the initial data. In some cases, we also prove convergence to enhanced motion in the sense of Ilmanen. To cite this article: F. Bethuel et al., C. R. Acad. Sci. Paris, Ser. I 336 (2003).

@@#100979@@

Nous présentons de nouveaux résultats concernant l'étude asymptotique du flot de la chaleur pour l'énergie de Ginzburg-Landau. En particulier, nous montrons que, lorsque le paramètre   tend vers 0, la vorticité évolue selon un mouvement par courbure moyenne, dans un sens faible introduit par Brakke. Notre seule hypothèse concerne une borne naturelle portant sur l'énergie de la condition initiale. Dans certains cas, nous montrons également la convergence vers un mouvement par courbure moyenne dans un sens plus fort dû à Ilmanen. Pour citer cet article : F. Bethuel et al., C. R. Acad. Sci. Paris, Ser. I 336 (2003).




© 2003  Académie des sciences@@#104156@@

EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Close
Article Outline
You can move this window by clicking on the headline