Article

Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text
Advertising


Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    6 0 0 0


Comptes Rendus Mathématique
Volume 336, n° 9
pages 739-744 (mai 2003)
Doi : 10.1016/S1631-073X(03)00127-4
Received : 22 May 2002 ;  accepted : 14 January 2003
On the convergence at infinity of the Leray solution of the two-dimensional Navier-Stokes equations to the prescribed asymptotic value

Dan  Socolescu
Fachbereich Mathematik, Universität Kaiserslautern, Erwin-Schrödinger-Strasse, 67663 Kaiserslautern, Germany 

@@#100979@@

In this Note we prove that  , the Leray velocity solution to the steady incompressible, two-dimensional Navier-Stokes equations, tends at infinity to the prescribed vector   We show also that the sequence   of Leray solutions to the same boundary value problem in the bounded domains   converges quasi-uniformly in   to   To cite this article: D. Socolescu, C. R. Acad. Sci. Paris, Ser. I 336 (2003).

@@#100979@@

Dans cette Note on prouve que  , la solution vitesse de Leray des équations stationnaires, incompressibles, bidimensionnelles de Navier-Stokes, tend à l'infini vers le vecteur imposé   On montre aussi que la suite   de solutions de Leray du même problème aux limites dans les domaines bornés   converge quasi-uniformément dans   vers   Pour citer cet article : D. Socolescu, C. R. Acad. Sci. Paris, Ser. I 336 (2003).




© 2003  Académie des sciences@@#104156@@

EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Close
Article Outline
You can move this window by clicking on the headline