Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    6 0 0 0

Comptes Rendus Mathématique
Volume 336, n° 9
pages 763-768 (mai 2003)
Doi : 10.1016/S1631-073X(03)00168-7
Received : 14 January 2003 ;  accepted : 11 Mars 2003
Virtual Betti numbers of real algebraic varieties

Clint  McCrory a ,  Adam  Parusinacute;ski b
aMathematics Department, University of Georgia, Athens, GA 30602, USA 
bDépartement de mathématiques, Université d'Angers, 2, bd Lavoisier, 49045 Angers cedex, France 


We show that for all   the  -th mod 2 Betti number of compact nonsingular real algebraic varieties has a unique extension to a virtual Betti number   defined for all real algebraic varieties, such that if   is a closed subvariety of   then  . We show by example that there is no natural weight filtration on the  -cohomology of real algebraic varieties with compact supports such that the virtual Betti numbers are the weighted Euler characteristics. To cite this article: C. McCrory, A. Parusinacute;ski, C. R. Acad. Sci. Paris, Ser. I 336 (2003).


On montre que pour tout entier positif   le  -ième nombre de Betti de la cohomologie à coefficients dans   des variétés algébriques réelles compactes nonsingulières admet une unique extension en un nombre de Betti virtuel  , défini pour toute variété algébrique réelle, telle que pour une sous-variété fermée  ,  . On donne un exemple qui montre qu'il n'existe pas de filtration par le poids naturelle sur la cohomologie à coefficients dans   des variétés algébriques réelles telle que les nombres de Betti virtuels soient les caractéristiques d'Euler par le poids associées à cette filtration. Pour citer cet article : C. McCrory, A. Parusinacute;ski, C. R. Acad. Sci. Paris, Ser. I 336 (2003).

© 2003  Académie des sciences@@#104156@@

EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline