Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 33,00 € Taxes included to order
    Pages Iconography Videos Other
    6 0 0 0

Comptes Rendus Mathématique
Volume 337, n° 1
pages 1-6 (juillet 2003)
Doi : 10.1016/S1631-073X(03)00261-9
Received : 7 December 2002 ;  accepted : 20 May 2003
Le groupe   d'une algèbre de biquaternions
The group   of a biquaternion algebra

Baptiste  Calmès
Équipe de topologie et géométrie algébriques, Université Paris 7, 175, rue du Chevaleret, 75013 Paris, France 


L'objet de cette Note est de décrire les grandes lignes de la démonstration de l'exactitude d'une suite qui relie le groupe   (noyau de la norme réduite) d'une algèbre de biquaternions sur un corps   au groupe de cohomologie galoisienne  . Cette suite est obtenue en utilisant certaines suites spectrales en cohomologie motivique ainsi que le calcul d'une partie de la filtration topologique d'une quadrique d'Albert. Pour citer cet article : B. Calmès, C. R. Acad. Sci. Paris, Ser. I 337 (2003).


In this Note, I will sketch the proof that a sequence relating the group   (kernel of the reduced norm) of a biquaternion algebra over a field   and the Galois cohomology group   is exact. The main steps of the proof contain computations in spectral sequences for motivic cohomology and in the topological filtration of an Albert quadric. To cite this article: B. Calmès, C. R. Acad. Sci. Paris, Ser. I 337 (2003).

© 2003  Académie des sciences@@#104156@@

EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline