Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    6 0 0 0

Comptes Rendus Mathématique
Volume 346, n° 15-16
pages 833-838 (août 2008)
Doi : 10.1016/j.crma.2008.06.003
Received : 26 October 2006 ;  accepted : 3 June 2008
Vers des lois de parois multi-échelle implicites
Towards implicit multi-scale wall-laws

Didier Bresch a , Vuk Milisic b
a LAMA UMR5127, Université de Savoie, 73000 Le Bourget du lac cedex, France 
b LMC-IMAG UMR5223, 51, rue des Mathématiques, B.P. 53, 38041 Grenoble cedex 9, France 


Le but de cette Note est de présenter une approche unifiée des approximations de type couche limite pour lʼopérateur de Laplace dans un domaine à bord rugueux périodique. On montre un résultat négatif pour une loi de paroi moyennée du second ordre. Pour contourner la difficulté, on propose de nouvelles lois de parois multi-échelles incluant les oscillations microscopiques sur la frontière fictive. Dans un premier temps, elles sont explicites et sʼexpriment comme des conditions de Dirichlet non-homogènes, ensuite on dérive une loi multi-échelle implicite de type Saffman–Joseph mais à coefficient variable. On établit des ordres de convergence et on montre leur validité numérique. On montre également sur un contre-exemple lʼimpossibilité de construire une loi dʼordre 2 effectif et qui soit moyennée dans les variables rapides. Pour citer cet article : D. Bresch, V. Milisic, C. R. Acad. Sci. Paris, Ser. I 346 (2008).

The full text of this article is available in PDF format.

The purpose of this Note is to present a unifying approach of boundary layer approximations for the Laplace operator in domains with periodic rugous boundaries. We show a negative result for an averaged second-order like wall-law. To circumvent this difficulty, we propose new multi-scale wall-laws that include microscopic oscillations on the fictitious boundary. In a first step they are explicit non-homogeneous Dirichlet conditions, afterwards an implicit multi-scale Saffman–Joseph-like wall-law is derived. We establish theoretical orders of convergence and provide their numerical assessment, as well as a counter-example that demonstrates the impossibility of a real averaged second order wall-law. To cite this article: D. Bresch, V. Milisic, C. R. Acad. Sci. Paris, Ser. I 346 (2008).

The full text of this article is available in PDF format.

© 2008  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline