Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    6 0 0 0

Comptes Rendus Mathématique
Volume 346, n° 15-16
pages 887-892 (août 2008)
Doi : 10.1016/j.crma.2007.10.038
Received : 17 November 2006 ;  accepted : 22 October 2007
Uniqueness of embedding of Gaussian probability measures into a continuous convolution semigroup on simply connected nilpotent Lie groups
Unicité du plongement de mesures de probabilité gaussiennes dans un semigroupe de convolution continu sur des groupes de Lie nilpotents et simplement connexes

Daniel Neuenschwander a, b, c
a Université de Lausanne, École des hautes études commerciales, Institut de sciences actuarielles, CH-1015 Lausanne, Switzerland 
b Universität Bern, Institut für mathematische Statistik und Versicherungslehre, CH-3012 Bern, Switzerland 
c Université de Lyon, Université Claude Bernard Lyon 1, Institut de Science Financière et dʼAssurances, 50, Avenue Tony Garnier, F-69007 Lyon, France 


Let   ( ) be continuous convolution semigroups on a simply connected nilpotent Lie group G . Suppose that   and that   is a Gaussian semigroup (in the sense that its generating distribution just consists of a primitive distribution and a second order differential operator). Then   for all  . To cite this article: D. Neuenschwander, C. R. Acad. Sci. Paris, Ser. I 346 (2008).

The full text of this article is available in PDF format.

Soient   ( ) des semigroupes de convolution continus sur un groupe de Lie G nilpotent et simplement connexe. Si   et si   est un semigroupe gaussien (au sens que sa distribution génératrice ne consiste que dʼune distribution primitive et dʼun opérateur différentiel de second ordre), alors   pour tout  . Pour citer cet article : D. Neuenschwander, C. R. Acad. Sci. Paris, Ser. I 346 (2008).

The full text of this article is available in PDF format.

© 2008  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline