Article

Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text
Advertising


Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    6 0 0 0


Comptes Rendus Mathématique
Volume 338, n° 1
pages 71-76 (janvier 2004)
Doi : 10.1016/j.crma.2003.10.027
Received : 22 September 2003 ;  accepted : 4 October 2003
On the fundamental theorem of surface theory under weak regularity assumptions

Sorin  Mardare
Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 4, place Jussieu, 75005 Paris, France 

@@#100979@@

We consider a symmetric, positive definite matrix field of order two and a symmetric matrix field of order two that together satisfy the Gauss and Codazzi-Mainardi equations in a connected and simply connected open subset of  . If these fields are of class   and   respectively, the fundamental theorem of surface theory asserts that there exists a surface immersed in the three-dimensional Euclidean space with the given matrix fields as its first and second fundamental forms. The purpose of this Note is to prove that this theorem still holds true under the weaker regularity assumptions that these fields are of class   and   respectively, the Gauss and Codazzi-Mainardi equations being then understood in a distributional sense. To cite this article: S. Mardare, C. R. Acad. Sci. Paris, Ser. I 338 (2004).

@@#100979@@

On considère un champ de matrices symétriques définies positives d'ordre deux et un champ de matrices symétriques d'ordre deux qui satisfont ensemble les équations de Gauss et de Codazzi-Mainardi dans un ouvert connexe et simplement connexe de  . Si ces champs sont respectivement de classe   et  , alors le théorème fondamental de la théorie des surfaces affirme qu'il existe une surface plongée dans l'espace Euclidean tridimensionnel dont ces champs sont les première et deuxième formes fondamentales. L'objet de cette Note est d'établir que ce théorème reste vrai sous les hypothèses de régularités affaiblies selon lesquelles ces champs sont respectivement de classe   et  , les équations the Gauss et de Codazzi-Mainardi étant alors satisfaites aux sens des distributions. Pour citer cet article : S. Mardare, C. R. Acad. Sci. Paris, Ser. I 338 (2004).




© 2003  Académie des sciences@@#104156@@

EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Close
Article Outline
You can move this window by clicking on the headline