Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 33,00 € Taxes included to order
    Pages Iconography Videos Other
    6 0 0 0

Comptes Rendus Mathématique
Volume 347, n° 19-20
pages 1159-1164 (octobre 2009)
Doi : 10.1016/j.crma.2009.09.002
Received : 3 April 2009 ;  accepted : 12 July 2009
Tangent unit-vector fields: Nonabelian homotopy invariants and the Dirichlet energy
Champs de vecteurs unités tangents : Invariants homotopiques non abelien et énergie de Dirichlet

Apala Majumdar a , J.M. Robbins b , Maxim Zyskin c
a Mathematical Institute, University of Oxford, 24 - 29 St. Giles, Oxford OX1 3LB, UK 
b School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK 
c Department of Mathematics, SETB 2.454 - 80 Fort Brown, Brownsville, TX 78520, USA 


Let O be a closed geodesic polygon in  . Maps from O into   are said to satisfy tangent boundary conditions if the edges of O are mapped into the geodesics which contain them. Taking O to be an octant of  , we evaluate the infimum Dirichlet energy,  , for continuous tangent maps of arbitrary homotopy type H . The expression for   involves a topological invariant – the spelling length – associated with the (nonabelian) fundamental group of the n -times punctured two-sphere,  . These results have applications for the theoretical modelling of nematic liquid crystal devices. To cite this article: A. Majumdar et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).

The full text of this article is available in PDF format.

Soit O un polygone géodésique fermé de  . On dit qu’une application de O dans   vérifie des conditions aux limites tangentes si elle associe à chaque côté de O la géodésique qui le contient. Dans le cas où O est un octant de  , on calcule l’infimum d’énergie de Dirichlet,  , pour des applications tangentes continues d’un type d’homotopie quelconque H . L’expression de   utilise un invariant topologique, la longueur nominale, lié au groupe fondamentel (non abélien) de la sphère   à n trous ponctuels,  . Les réeultats obtenus ont des applications pratiques, notamment dans la modélisation des systèmes contenant de cristaux liquides nématiques. Pour citer cet article : A. Majumdar et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).

The full text of this article is available in PDF format.

© 2009  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline