Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    4 0 0 0

Comptes Rendus Mathématique
Volume 347, n° 19-20
pages 1173-1176 (octobre 2009)
Doi : 10.1016/j.crma.2009.09.006
Received : 28 June 2009 ;  accepted : 2 September 2009
On the vector bundles over rationally connected varieties
Des fibrés vectoriels sur les variétés rationnellement connexes

Indranil Biswas a , João Pedro P. dos Santos b
a School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India 
b Institut de mathématiques de Jussieu, 175, rue du Chevaleret, 75013 Paris, France 


Let X be a rationally connected smooth projective variety defined over   and   a vector bundle such that for every morphism  , the pullback   is trivial. We prove that E is trivial. Using this we show that if   is isomorphic to   for all γ of the above type, where   is some line bundle, then there is a line bundle ζ over X such that  . To cite this article: I. Biswas, J.P.P. dos Santos, C. R. Acad. Sci. Paris, Ser. I 347 (2009).

The full text of this article is available in PDF format.

Soit X une variété rationnellement connexe sur   et soit   un fibré vectoriel tel que, pour tout morphisme  , le fibré   est trivial. Nous montrons que E est trivial. Nous en déduisons que si, pour tout γ comme avant,   est isomorphe à  , où   est un fibré en droites, alors il existe un fibré en droites ζ sur X et un isomorphisme  . Pour citer cet article : I. Biswas, J.P.P. dos Santos, C. R. Acad. Sci. Paris, Ser. I 347 (2009).

The full text of this article is available in PDF format.

© 2009  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline