Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    6 0 0 0

Comptes Rendus Mathématique
Volume 347, n° 23-24
pages 1423-1428 (décembre 2009)
Doi : 10.1016/j.crma.2009.10.007
Received : 16 October 2008 ;  accepted : 2 October 2009
Viability property on Riemannian manifolds
Propriété de viabilité sur une variété riemannienne

Shige Peng a , Xuehong Zhu a, b
a Institute of Mathematics, Shandong University, Jinan, 250100, China 
b School of Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China 


This Note studies a sufficient and necessary condition for the viability property of a state system in a closed subset K of a finite-dimensional compact Riemannian manifold without boundary. Our result is: the system enjoys the viability property in K if and only if the square of the distance function of K is a viscosity supersolution of a second-order partial differential equation in some neighborhood of K . To cite this article: S. Peng, X. Zhu, C. R. Acad. Sci. Paris, Ser. I 347 (2009).

The full text of this article is available in PDF format.

Dans cette Note on donne une condition nécessaire et suffisante pour que soit satisfaite la propriété de viabilité d’un système sur un sous-ensemble K d’une variété riemannienne, de dimension finie, sans bord. Le résultat s’énonce ainsi : le système sur K possède la propriété de viabilité si et seulement si le carré de la fonction distance à K est une sursolution de viscosité d’une équation aux dérivées partielles du second ordre définie sur un voisinage de K . Pour citer cet article : S. Peng, X. Zhu, C. R. Acad. Sci. Paris, Ser. I 347 (2009).

The full text of this article is available in PDF format.

© 2009  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline