Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    4 0 0 0

Comptes Rendus Mathématique
Volume 348, n° 9-10
pages 509-512 (mai 2010)
Doi : 10.1016/j.crma.2010.03.008
Received : 16 December 2009 ;  accepted : 12 Mars 2010
A generalization of the category   of Bernstein–Gelfand–Gelfand
Une généralisation de la catégorie   de Bernstein–Gelfand–Gelfand

Guillaume Tomasini
IRMA, CNRS et Université de Strasbourg, 7, rue René-Descartes, 67084 Strasbourg cedex, France 


In the study of simple modules over a simple complex Lie algebra, Bernstein, Gelfand and Gelfand introduced a category of modules which provides a natural setting for highest weight modules. In this note, we define a family of categories which generalizes the BGG category. We classify the simple modules for some of these categories. As a consequence we show that these categories are semisimple.

The full text of this article is available in PDF format.

L’étude des représentations irréductibles d’une algèbre de Lie simple définie sur le corps des nombres complexes a conduit Bernstein, Gelfand et Gelfand a introduire une catégorie qui fournit un cadre naturel pour les modules de plus haut poids. Le but de cette note est de présenter une construction d’une famille de catégories généralisant celle de Bernstein–Gelfand–Gelfand. Nous décrivons les modules simples de certaines de ces catégories. Cette classification permet de montrer que ces catégories sont semi-simples.

The full text of this article is available in PDF format.

© 2010  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline