Article

Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text
Advertising


Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    5 0 0 0


Comptes Rendus Mathématique
Volume 348, n° 9-10
pages 575-579 (mai 2010)
Doi : 10.1016/j.crma.2010.03.004
Received : 8 February 2010 ;  accepted : 5 Mars 2010
A posteriori error bounds for the empirical interpolation method
Un estimateur a posteriori d’erreur pour la méthode d’interpolation empirique
 

Jens L. Eftang a , Martin A. Grepl b , Anthony T. Patera c
a Norwegian University of Science and Technology, Department of Mathematical Sciences, NO-7491 Trondheim, Norway 
b RWTH Aachen University, Numerical Mathematics, Templergraben 55, 52056 Aachen, Germany 
c Massachusetts Institute of Technology, Department of Mechanical Engineering, Room 3-264, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA 

Abstract

We present rigorous a posteriori error bounds for the Empirical Interpolation Method (EIM). The essential ingredients are (i) analytical upper bounds for the parametric derivatives of the function to be approximated, (ii) the EIM “Lebesgue constant,” and (iii) information concerning the EIM approximation error at a finite set of points in parameter space. The bound is computed “off-line” and is valid over the entire parameter domain; it is thus readily employed in (say) the “on-line” reduced basis context. We present numerical results that confirm the validity of our approach.

The full text of this article is available in PDF format.
Résumé

On introduit des bornes d’erreur a posteriori rigoureuses pour la méthode d’interpolation empirique, EIM en abrégé (pour Empirical Interpolation Method). Les ingrédients essentiels sont (i) des bornes analytiques des dérivées par rapport au paramètre de la fonction à interpoler, (ii) une « constante de Lebesgue » de EIM, et (iii) de l’information sur l’erreur d’approximation commise par EIM en un nombre fini de points dans l’espace des paramètres. La borne, une fois pré-calculée « hors-ligne », est valable sur tout l’espace des paramètres ; elle peut donc être utilisée directement telle quelle dans les applications (étape « en ligne » des calculs dans le contexte de la méthode des bases réduites). On montre des résultats numériques qui confirment la validité de notre approche.

The full text of this article is available in PDF format.


© 2010  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Close
Article Outline
You can move this window by clicking on the headline
@@#110903@@