Article

Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text
Advertising


Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    6 0 0 0


Comptes Rendus Mathématique
Volume 348, n° 9-10
pages 587-592 (mai 2010)
Doi : 10.1016/j.crma.2010.04.011
accepted : 1 April 2010
A Lagrangian approach to intrinsic linearized elasticity
Une approche lagrangienne de l’élasticité linéarisée intrinsèque
 

Philippe G. Ciarlet a , Patrick Ciarlet b , Oana Iosifescu c , Stefan Sauter d , Jun Zou e
a Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 
b Laboratoire POEMS, École nationale supérieure de techniques avancées, 32, boulevard Victor, 75739 Paris cedex 15, France 
c Département de mathématiques, université de Montpellier II, place Eugène-Bataillon, 34095 Montpellier cedex 5, France 
d Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland 
e Department of Mathematics, Lady Shaw Building, The Chinese University of Hong Kong, Shatin, Hong Kong 

Abstract

We consider the pure traction problem and the pure displacement problem of three-dimensional linearized elasticity. We show that, in each case, the intrinsic approach leads to a quadratic minimization problem constrained by Donati-like relations. Using the Babuška–Brezzi inf–sup condition, we then show that, in each case, the minimizer of the constrained minimization problem found in an intrinsic approach is the first argument of the saddle-point of an ad hoc Lagrangian, so that the second argument of this saddle-point is the Lagrange multiplier associated with the corresponding constraints.

The full text of this article is available in PDF format.
Résumé

On considère le problème en déplacement pur et le problème en traction pure de l’élasticité linéarisée tri-dimensionnelle. On montre que, dans chaque cas, l’approche intrinsèque conduit à un problème de minimisation quadratique avec des contraintes semblables à celles de Donati. Utilisant la condition inf–sup de Babuška–Brezzi, on montre ensuite que, dans chaque cas, le minimiseur du problème de minimisation avec contraintes trouvé dans une approche intrinsèque est le premier argument du point-selle d’un lagrangien approprié, ce qui fait que le second argument de ce point-selle est le multiplicateur de Lagrange associé aux contraintes correspondantes.

The full text of this article is available in PDF format.


© 2010  Published by Elsevier Masson SAS de la part de Académie des sciences.
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Close
Article Outline
You can move this window by clicking on the headline
@@#110903@@