Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    4 0 0 0

Comptes Rendus Mathématique
Volume 339, n° 2
pages 87-90 (juillet 2004)
Doi : 10.1016/j.crma.2004.04.021
Received : 3 February 2004 ;  accepted : 30 April 2004
Le nombre des diviseurs d'un entier dans les progressions arithmétiques
The number of divisors of an integer in arithmetic progressions

Abdallah  Derbal a * ,  Abdelhakim  Smati b
aDépartement de mathématiques, École normale supérieure, BP 92, Vieux Kouba, Alger, Algérie 
bLaco, UMR-CNRS 6090, université de Limoges, 123, avenue Albert Thomas, 87060 Limoges cedex, France 

*Auteur correspondant.

Soit   la fonction nombre des diviseurs de l'entier naturel  , dans les progressions arithmétiques  , avec   et   premiers entre-eux, et soit   définie par :   Dans cette Note, nous étudions et donnons la structure des nombres  -hautement composés supérieurs qui généralisent ceux définis par S. Ramanujan. Nous prouvons que le maximum absolu de   est atteint sur ces nombres et nous le donnons explicitement pour   ; généralisant ainsi l' étude faite par Nicolas et Robin pour  . Pour citer cet article : A. Derbal, A. Smati, C. R. Acad. Sci. Paris, Ser. I 339 (2004).


Let   be the function number of divisors of the integer  , in arithmetic progressions  , with   and   coprime, and let   defined as follows:   In this Note, we study and give the structure of  -superior, highly composite numbers, which generalize those defined by S. Ramanujan. We prove that   reaches its maximum among these numbers. We give it explicitly for  . This generalizes the study of Nicolas and Robin, in which the case   is treated. To cite this article: A. Derbal, A. Smati, C. R. Acad. Sci. Paris, Ser. I 339 (2004).

© 2004  Académie des sciences@@#104156@@

EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline