Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    4 0 0 0

Comptes Rendus Mathématique
Volume 348, n° 15-16
pages 919-922 (août 2010)
Doi : 10.1016/j.crma.2010.07.005
Received : 22 July 2009 ;  accepted : 6 July 2010
Lie bialgebroids of generalized CRF -manifolds
Bi-algébroïdes de Lie des variétés CRF généralisées

Yat Sun Poon a , Aïssa Wade b
a Department of Mathematics, University of California at Riverside, CA 92521, USA 
b Department of Mathematics, Penn State University, University Park, PA 16802, USA 


The notion of a generalized CRF -structure on a smooth manifold was recently introduced and studied by Vaisman (2008) [[6]]. An important class of generalized CRF -structures on an odd dimensional manifold M consists of CRF -structures having complementary frames of the form  , where ξ is a vector field and η is a 1-form on M with  . It turns out that these kinds of CRF -structures give rise to a special class of what we called strong generalized contact structures in Poon and Wade [[5]]. More precisely, we show that to any CRF -structures with complementary frames of the form  , there corresponds a canonical Lie bialgebroid. Finally, we explain the relationship between generalized contact structures and another generalization of the notion of a Cauchy–Riemann structure on a manifold.

The full text of this article is available in PDF format.

La notion de structure CRF généralisée sur une variété lisse a été récemment introduite et étudiée par Vaisman (2008) [[6]]. Une classe importante de structures CRF généralisées sur une variété M de dimension impaire est constituée de structures CRF généralisées ayant des repères supplémentaires de la forme  , où ξ est un champ de vecteurs et η est une 1-forme differentielle sur M avec  . Il s'avère que ces types de structures CRF généralisées donnent lieu à une classe spéciale de structures que nous avons appelées des structures de contact généralisées fortes dans Poon et Wade [[5]]. Plus précisément, nous montrons qu'à toute structure CRF généralisée ayant des repères supplémentaires de la forme  , il correspond un bi-algèbroïde de Lie canonique. Finalement, nous expliquons la relation entre les structures de contact généralisées et une autre généralisation de la notion de structure-CR (Cauchy–Riemann) sur une variété.

The full text of this article is available in PDF format.

© 2010  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline