Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 33,00 € Taxes included to order
    Pages Iconography Videos Other
    5 0 0 0

Comptes Rendus Mathématique
Volume 339, n° 5
pages 321-325 (septembre 2004)
Doi : 10.1016/j.crma.2004.06.013
Received : 29 May 2004 ;  accepted : 1 June 2004
Mordell type exponential sum estimates in fields of prime order
Estimations de type Mordell pour les sommes exponentielles dans les corps d'ordre premier.

Jean Bourgain
IAS, School of Mathematics, Princeton, NJ 08540, USA 


We establish a Mordell type exponential sum estimate (see Mordell [Q. J. Math. 3 (1932) 161-162]) for sparse' polynomials   prime, under essentially optimal conditions on the exponents  . The method is based on sum-product estimates in finite fields   and their Cartesian products. We also obtain estimates on incomplete sums of the form   for  , under appropriate conditions on the  . To cite this article: J. Bourgain, C. R. Acad. Sci. Paris, Ser. I 339 (2004).

The full text of this article is available in PDF format.

Nous démontrons une estimée du type Mordell (voir Mordell [Q. J. Math. 3 (1932) 161-162]) pour les sommes exponentielles associées à des polynômes clairsemés  ,  , p premier, sous des hypothèses essentiellement optimales sur les exposants  . La méthode repose sur des estimés « sommes-produits » dans des corps finis   et leurs produits cartésiens. On obtient également des bornes non-triviales sur des sommes incomplètes de la forme   pour  , sous des hypothèses appropriées sur les  . Pour citer cet article : J. Bourgain, C. R. Acad. Sci. Paris, Ser. I 339 (2004).

The full text of this article is available in PDF format.

© 2004  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline