Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 33,00 € Taxes included to order
    Pages Iconography Videos Other
    4 0 0 0

Comptes Rendus Mathématique
Volume 339, n° 10
pages 695-698 (novembre 2004)
Doi : 10.1016/j.crma.2004.09.034
Received : 13 January 2004 ;  accepted : 21 September 2004
Sur un théorème de Cauchy-Kowalewski-Nagumo global dans des espaces de Gevrey projectifs
On a global Cauchy-Kowalewski-Nagumo theorem in projective Gevrey space.

Daniel Gourdin a , Todor Gramchev b
a UFR 920, université de Paris 6, 4, place Jussieu, 75252 Paris cedex 05, France 
b Dipartimento Matematica, Università di Cagliari, via Ospedale, 72, 09124 Calgliari, Italie 


Nous proposons une nouvelle approche, basée à la fois sur le principe de contraction et celui des approximations successives de Picard, pour l'étude d'un problème de Cauchy global associé à l'opérateur aux dérivées partielles   à coefficients   continus ou holomorphes en t dans les espaces de Gevrey projectifs. Nous généralisons aussi les résultats d'une Note précédente au cas d'opérateurs non Kowalewskiens. Pour citer cet article : D. Gourdin, T. Gramchev, C. R. Acad. Sci. Paris, Ser. I 339 (2004).

The full text of this article is available in PDF format.

We propose a new approach, based on a combination of the contraction principle and Picard successive approximations, for the study of a global Cauchy problem associated to partial differential operator   with coefficients   continuous or holomorphic with respect to t in projective Gevrey spaces. We extend the result of a previous Note to the case of non Kowalewskian operators. To cite this article: D. Gourdin, T. Gramchev, C. R. Acad. Sci. Paris, Ser. I 339 (2004).

The full text of this article is available in PDF format.

© 2004  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline