Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    4 0 0 0

Comptes Rendus Mathématique
Volume 340, n° 1
pages 27-30 (janvier 2005)
Doi : 10.1016/j.crma.2004.11.021
Received : 12 November 2004 ;  accepted : 19 November 2004
On Poincaréʼs and J.L. Lionsʼ lemmas
Sur les lemmes de Poincaré et de J.L. Lions

Srinivasan Kesavan
The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai - 600 113, India 


Let be a bounded, connected and simply connected open subset of   with a Lipschitz continuous boundary. It is shown that an irrotational vector field whose components are in   is the gradient of a function in  . It is also shown that this generalization of a classical lemma of Poincaré is equivalent to a well-known lemma of J.L. Lions. To cite this article: S. Kesavan, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

The full text of this article is available in PDF format.

Soit un ouvert borné de   connexe et simplement connexe à frontière lipschitzienne. On montre quʼun champ vectoriel à composantes dans   dont le rotationnel est nul est le gradient dʼune fonction dans  . On montre que cette généralisation dʼun lemme classique de Poincaré est equivalent à un lemme très connu de J.L. Lions. Pour citer cet article : S. Kesavan, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

The full text of this article is available in PDF format.

© 2004  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline