Article

Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text
Advertising


Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    6 0 0 0


Comptes Rendus Mathématique
Volume 340, n° 1
pages 69-74 (janvier 2005)
Doi : 10.1016/j.crma.2004.11.016
Received : 20 October 2004 ;  accepted : 16 November 2004
Approximation numérique dʼun problème de membrane non linéaire
Numerical approximation for a nonlinear membrane problem
 

Nabil Kerdid a , Hervé Le Dret b , Abdelkader Saïdi c
a College of Computer Science and Information Systems, Imam University, Riyadh, Saudi Arabia 
b Laboratoire Jacques-Louis Lions, université Pierre et Marie Curie, boîte courrier 187, 75252 Paris cedex 05, France 
c Institut de recherche mathématique avancée, université Louis Pasteur, 7, rue René Descartes, 67084 Strasbourg, France 

Résumé

On étudie numériquement les déformations dʼune membrane élastique non linéaire. On considère le modèle de membrane obtenu par Le Dret et Raoult par la méthode de Γ -convergence. Les déformations de la membrane minimisent une énergie non quadratique. On effectue une approximation du modèle par éléments finis conformes et on utilise un algorithme de gradient conjugué non linéaire pour minimiser lʼénergie discrétisée. Pour citer cet article : N. Kerdid et al., C. R. Acad. Sci. Paris, Ser. I 340 (2005).

The full text of this article is available in PDF format.
Abstract

We study numerically the deformations of a nonlinearly elastic membrane. We consider the nonlinear membrane model obtained by Le Dret and Raoult using Γ -convergence. In this model, membrane deformations minimize a highly nonquadratic energy. We consider a conforming finite element approximation of the problem and use a nonlinear conjugate gradient algorithm to minimize the discrete energy. To cite this article: N. Kerdid et al., C. R. Acad. Sci. Paris, Ser. I 340 (2005).

The full text of this article is available in PDF format.


© 2004  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Close
Article Outline
You can move this window by clicking on the headline
@@#110903@@