Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    6 0 0 0

Comptes Rendus Mathématique
Volume 341, n° 4
pages 253-258 (août 2005)
Doi : 10.1016/j.crma.2005.06.028
Received : 3 June 2005 ;  accepted : 20 June 2005
Riemannian connections and curvatures on the universal Teichmuller space
Connexions riemanniennes et courbures sur lʼespace de Teichmuller universel

Hélène Airault a, b
a INSSET, université de Picardie, 48, rue Raspail, 02100 Saint-Quentin, France 
b Laboratoire CNRS UMR 6140 LAMFA, 33, rue Saint-Leu, 80039 Amiens, France 


We define Riemannian connections on the universal Teichmuller space  . For the Levi-Civitaʼs connection on  , the Riemannian curvature tensor is well defined and the Ricci curvature is finite. We obtain several series of infinite dimensional operators which converge. To cite this article: H. Airault, C. R. Acad. Sci. Paris, Ser. I 341 (2005).

The full text of this article is available in PDF format.

On définit plusieurs connexions riemanniennes sur lʼespace de Teichmuller universel  . Pour la connexion de Levi-Civita sur  , le tenseur de courbure existe et la courbure de Ricci est finie. On obtient plusieurs séries dʼopérateurs de lʼespace de dimension infinie qui convergent. Pour citer cet article : H. Airault, C. R. Acad. Sci. Paris, Ser. I 341 (2005).

The full text of this article is available in PDF format.

© 2005  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline