Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    4 0 0 0

Comptes Rendus Mathématique
Volume 341, n° 6
pages 339-342 (septembre 2005)
Doi : 10.1016/j.crma.2005.07.020
Received : 24 May 2005 ;  accepted : 7 June 2005
De la K -théorie algébrique vers la K -théorie hermitienne
From algebraic K -theory to Hermitian K -theory

Max Karoubi
Département de mathématiques, UMR 7586 du CNRS, case 7012, université Paris 7, 2, place Jussieu, 75251 Paris cedex 05, France 


Dans cette Note, nous introduisons un morphisme nouveau entre la K -théorie algébrique et la K -théorie hermitienne. Lʼanalogue topologique en est lʼopération dʼAdams   en K -théorie réelle. Nous en déduisons une minoration de la K -théorie algébrique supérieure dʼun anneau A en termes du groupe de Witt classique de lʼanneau  . Pour citer cet article : M. Karoubi, C. R. Acad. Sci. Paris, Ser. I 341 (2005).

The full text of this article is available in PDF format.

In this Note, we introduce a new morphism between algebraic and hermitian K -theory. The topological analog is the Adams operation   in real K -theory. From this morphism, we deduce a lower bound for the higher algebraic K -theory of a ring A in terms of the classical Witt group of the ring  . To cite this article: M. Karoubi, C. R. Acad. Sci. Paris, Ser. I 341 (2005).

The full text of this article is available in PDF format.

© 2005  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline