Article

Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text
Advertising


Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    4 0 0 0


Comptes Rendus Mathématique
Volume 341, n° 6
pages 365-368 (septembre 2005)
Doi : 10.1016/j.crma.2005.06.027
Received : 7 October 2004 ;  accepted : 20 June 2005
Sélection automatique du paramètre de lissage pour lʼestimation non paramétrique de la régression pour des données fonctionnelles
Automatic smoothing parameter selection for the nonparametric regression estimation of functional data
 

Mustapha Rachdi a , Philippe Vieu b
a Université Pierre Mendès France, UFR SHS, BP. 47, 38040 Grenoble cedex 09, France 
b Université Paul Sabatier, LSP UMR CNRS 5583, 118, route de Narbonne, 31062 Toulouse cedex, France 

Résumé

Dans cette Note, nous étudions lʼestimation de la régression quand le régresseur est de type fonctionnel. Lʼestimateur de la régression pour ce type de données a été récemment introduit. Il dépend dʼun paramètre de lissage qui contrôle sa vitesse de convergence, et le but de notre travail est de construire un critère de choix automatique de ce paramètre. Le critère est formulé sous la forme dʼune validation croisée fonctionnelle. Sous certaines hypothèses sur lʼopérateur de regression (inconnu), nous montrons que cette procédure est optimale. En plus, nous établissons lʼéquivalence asymptotique entre plusieurs mesures de risque pour lʼestimation non paramétrique de lʼopérateur de régression. Pour citer cet article : M. Rachdi, P. Vieu, C. R. Acad. Sci. Paris, Ser. I 341 (2005).

The full text of this article is available in PDF format.
Abstract

We study regression estimation when the explanatory variable is functional. Nonparametric estimates of the regression operator have been recently introduced. They depend on a smoothing factor which controls its behaviour, and the aim of our Note is to construct some data-driven criterion for choosing this smoothing parameter. The criterion can be formulated in terms of a functional version of cross-validation ideas. Under mild assumptions on the unknown regression operator, it is seen that this rule is asymptotically optimal. As by-products of this result, we state asymptotic equivalences for several measures of accuracy for nonparametric estimate of the regression operator. To cite this article: M. Rachdi, P. Vieu, C. R. Acad. Sci. Paris, Ser. I 341 (2005).

The full text of this article is available in PDF format.


© 2005  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Close
Article Outline
You can move this window by clicking on the headline
@@#110903@@